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It is shown in this paper that, by the appropriate choice of gain and input in#uence
matrices, certain eigenpairs of a vibrating system may be assigned while the other
eigenpairs remain unchanged. The system under consideration is modelled by a set of
second order di!erential equations and the assignment is carried by multi-input state
feedback control. The solution may be of particular interest in the stabilization and
control of #exible structures using smart materials, where only a small part of the
eigenstructure is to be reassigned and the rest is required to remain unchanged. The
method presented is illustrated with a numerical example.
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1. INTRODUCTION

Consider the vibratory system modelled by the second order matrix di!erential
equation

MxK#Cx5 #Kx"0, (1)

where the dots denote di!erentiation with respect to time and the n-square real
matrices M, C and K are symmetric. Separation of variables

x(t)"zejt, z a constant vector

in equation (1), leads to the quadratic eigenvalue problem of "nding the eigenvalues
j
k
and the associated eigenvectors z

k
O0, which satisfy

P (j
k
)z

k
"0, k"1, 2,2, 2n, (2)
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where
P(j)"(j2M#jC#K).

Assembling the 2n relations (2) we can write

MZK2#CZK#KZ"O,

where K"diag Mj
1
, j

2
,2, j

2n
N and Z"(z

1
, z

2
,2, z

2n
). Our interest here is in the

case where the set Mj
k
N2n
1

is distinct, from which it follows that the eigenvectors
Mz

k
N2n
1

are two-fold linearly independent in the sense that

W"A
Z

ZKB (3)

is invertible. If (j, z) is an eigenpair of equation (2) then the complex conjugate (j1 , z6 )
is also an eigenpair because M, C and K are real. Hence, we can say that the sets
Mj

k
N2n
1

and Mz
k
N2n
1

are pairwise self-conjugate in the sense that they are self-conjugate
and z

p
"z6

q
whenever j

p
"j1

q
, for all p and q. Where there is no ambiguity, we will

refer to a diagonal matrix of the j
k
and the matrix of corresponding z

k
as pairwise

self-conjugate if the associated sets are pairwise self-conjugate.
The dynamics of equation (1) can be modi"ed by applying a control force Bu(t),

B an n]m matrix and u(t) a time-dependent m vector. The model relation (1) now
becomes

MxK#Cx5 #Kx"Bu(t). (4)
The special choice

u(t)"FTx5 #GTx, (5)

where F and G are n]m matrices, is called state feedback control and leads to the
eigenvalue problem

MYD2#(C!BFT )YD#(K!BGT )Y"O, (6)

where Y3Cn]2n is the eigenvector matrix and the diagonal D3C2n]2n is the
eigenvalue matrix.

We note in passing that whereas equation (5) applies state feedback control using
position and velocity, the choice

u (t)"FTxK#GTx5

applies state feedback control using acceleration and velocity. This choice leads to
a problem which can be recast as a position and velocity problem for the same M,
C and K matrices but taken in the reverse order. We leave the details to the
interested reader.

The problem of "nding F and G such that the closed-loop quadratic pencil
j2M#j (C!BFT)#(K!BGT) has a desired set of 2n eigenvalues is called the
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eigenvalue assignment or more popularly, the pole placement problem, in control
theory literature. In most practical situations, however, only a few eigenvalues of
the open-loop pencil P(j)"j2M#jC#K are undesirable (i.e., do not lie in the
left-half plane as required for stability). In those situations, it makes more sense to
replace only the undesirable eigenvalues while leaving the others unchanged. This
modi"ed pole placement problem is called the partial pole placement problem. The
partial pole placement problem for the quadratic pencil P(j) has been solved
recently in the single- and multi-input cases [1, 2]. The solutions in both cases have
been obtained solely in the second order setting in the sense that they do not
depend on a "rst order realization [3, 4] and deal directly with matrices M, K and
C. While the pole placement problem is important in its own right, it is to be noted
that, if the system transient response needs to be altered by feedback, both
eigenvalue placement as well as eigenvector placement should be considered.

This is easily seen from the model expansion theorem (see references [3, 5])
which says that every solution x(t) of equation (1) in the form x(t)"zejt,
representing a free response of equation (1), can be written in terms of the
eigenvalues and eigenvectors of the pencil P(j):

x (t)"
2n
+
k/1

a
k
ejkt z

k
.

Thus, the eigenvalues determine the rate at which the system response decays or
grows, while the eigenvectors determine the shape of the response.

The problem of altering both the eigenvalues and the eigenvectors of the
closed-loop pencil is known as the eigenstructure assignment problem.

For the second order system eigenstructure problem, see References [3, 6}8] and
for the "rst order system, see references [9}12].

Unfortunately, the eigenstructure problem, in general, is not solvable if the matrix
B is given (see reference [6]). Recent progress with smart materials makes the concept
of full-state feedback, with a dense matrix B, possible [13] and practical. Also, control
of robot vibration allows application of a full-state feedback control. In this paper we
consider a more tractable problem, namely the partial eigenstructure assignment
problem by allowing B to be chosen. Speci"cally, we consider Problem 1.1. stated
below and obtain a solution of the problem entirely in the second order setting,
without resorting to the "rst order realization, so that the problem order is not
doubled, the inverse of M is not computed explicitly and the exploitable structures
o!ered by the problem, such as sparsity, symmetry, de"niteness, etc., are preserved.

In order that the control be realizable by means of physical devices, the matrices
B, F and G must all be real. In such a case, the eigenvalues and eigenvectors are
pairwise self-conjugate.

Let us partition the n]2n eigenvector matrix and 2n]2n eigenvalue matrix as
follows:

Z"(Z
1

m

Z
2
),

2n~m

K"A
K

1

m

K
2

2n~m

B m

2n~m ,

where Z
1

and K
1

are pairwise self-conjugate.
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In this paper we address the following.
Problem 1.1. Given
(a) real symmetric M, C and K,
(b) Z

1
and K

1
pairwise self-conjugate,

(c) Y
1
3Cn]m, D

1
3Cm]m, pairwise self-conjugate such that with

Y"(Y
1

m

Z
2
),

2n~m

D"A
D

1

m

K
2

2n~m

B m

2n~m ,

the matrix

A
Y

YDB (7)

is invertible,

,nd B, F, G3Rn]m such that equation (6) holds.

2. MAIN RESULTS

The solution process consists of two stages:
(a) Determine matrices B) , F< and G) which are generally complex and which satisfy

MYD2#(C!B< F< T)YD#(K!B< G< T )Y"O. (8)

(b) From B< , F< and G< "nd real B, F, and G such that BFT"B< F< T and BGT"B< G< T.
Let us focus "rst on stage (a).

Suppose that B3 , F3 and G3 be a solution. Then

MY
1
D2

1
#CY

1
D

1
#KY

1
"B3 (F3 TY

1
D

1
#G3 TY

1
). (9)

Suppose that B3 , F3 and G3 is a solution to Problem 1.1, and let W3Cm]p, p*m
have pseudoinverse =`3Cp]m such that WW`"I3Rm]m. Then B<"B3 W,
F<"F3 W` and G< "GE W`, is another solution because B3 F3 T"B< F< T and
B3 G3 T"B< G< T.

Using W3Cm]p with p'm allows for the construction of a solution in which
B can have dimension n]p, p'm. This fact is a consequence of the arbitrariness in
the solution which we will not pursue here.

Denote
W"F3 TY

1
D

1
#G3 TY

1
. (10)

Then, provided that W is invertible, B<"B3 W is admissable for some F< and G< . We
can therefore take

B<"MY
1
D2

1
#CY

1
D

1
#KY

1
(11)

by virtue of equations (9) and (10). Relations (11) and (8) together imply that

F< TY
1
D

1
#G< TY

1
"I. (12)
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In reference [14] it is shown that

Theorem 2.1. For any U3Cm]m,

F<"MZ
1
K

1
U, G< "!KZ

1
U (13)

satisfy
MZ

2
K2

2
#(C!B< F< T)Z

2
K

2
#(K!B< G< T)Z

2
"O.

In other words, F< and G< of form (13) ensure that the last 2n!m eigenpairs of the
uncontrolled system are also eigenpairs of the controlled system.

Substituting equation (13) into equation (12) gives

U"(K
1
ZT

1
MY

1
D

1
!ZT

1
KY

1
)~1 (14)

from which F< and G) can be determined.
The solution B< , F) and G< which results from this process is in general complex.

However, we now show that the products B< F< T and B< G< T are always real.
It follows from equation (8) and the pairwise self-conjugacy of Y and D that we

can write, denoting the conjugates by overbars,

MYD2#(C!B< F< T)YD#(K!B< G< T)Y"O. (15)

Conjugating equation (8) gives

MYD2#(C!B< F< T)YD#(K!B< G< T)Y"O. (16)

Subtracting equation (15) from equation (16) gives

(B< F< T!B< F< T)YD#(B< G< T!B< G< T)Y"O

which can be rewritten in block matrix form as

(B< G< T!B< G< T DB< F< T!B< F< T ) A
Y

YDB"O.

The invertibility of equation (7) implies that the left-hand matrix vanishes, from
which it follows that B< F< T and B< G< T are real.

2.1. REAL B, F, AND G FROM BK , FK , AND GK

At the start of the second stage we have generally complex B< , F) and G< but real
products B< F< T and B< G< T. Therefore, let us denote the real n]2n product by

H"B< [F< T DG< T]
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and let

LR"H

L3Rn]m, R3Rm]2n be any factoring of the right-hand side H. Then we can take
B to be L and the "rst n columns of R to be FT and the last n to be GT.

The two factorings which immediately come to mind for this purpose are the Q
factorings and the singular-value decomposition (SVD) (see for example references
[15, 16, 5]. We now describe the use of these two factorings to "nd real B, F, and G.
In both of these cases, we use the so-called truncated or compact form of the
factoring.

The truncated QR factorization [15] produces an L3Rn]m in which the
m column are orthogonal and an R3Rm]2n which is upper triangular. For example,
in the case of 5]10 matrix H we have

LR"A
x x x

x x x

x x x

x x x

x x x
B A

x x x x x

x x x x

x x x

D x x x x x

D x x x x x

D x x x x xB .

By contrast, when the rank of H is m)n, the compact SVD produces three
matrices U3Rn]m, orthogonal, &3Rm]m, diagonal, and V3R2n]m, orthogonal
which are such that

U&VT"H,

A
U

x x x

x x x

x x x

x x x

x x x
B A

&

x

x

xB A
x x x x x

x x x x x

x x x x x

VT

D x x x x x

D x x x x x

D x x x x xB .

In this case, we take B to be the product U& and we take the "rst n rows of V to be
F and the last n rows to be G,

LR"(U&)VT. (17)

3. EXAMPLE

In this section we demonstrate the technique on a simple example. The example
models a 4-degree-of-freedom system in which we assign two eigenpairs. The



TABLE 1

Spectra of the open- and closed-loop systems

k j
k

d
k

1 !2)0923(e!001)!1)8256(e#000)i !1)0000(e#000)!1)0000(e#000)i
2 !2)0923(e!001)#1)8256(e#000)i !1)0000(e#000)#1)0000(e#000)i
3 !1)3080(e!001)!3)1920(e#000)i !2)0923(e!001)!1)8256(e#000)i
4 !1)3080(e!001)#3)1920(e#000)i !2)0923(e!001)#1)8256(e#000)i
5 !1)2147(e!001)!4)4412(e!001)i !1)3080(e!001)#3)1920(e#000)i
6 !1)2147(e!001)#4)4412(e!001)i !1)3080(e!001)!3)1920(e#000)i
7 !3)8508(e!002)!4)1362(e#000)i !1)2147 (e!001)#4)4412(e!001)i
8 !3)8508(e!002)#4)1362(e#000)i !1)2147(e!001)!4)4412(e!001)i
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open-loop system we use has the matrices

M"I, C"diagM1
2
, 0, 0, 1

2
N

and

K"A
5 !5 0 0

!5 10 !5 0

0 !5 10 !5

0 0 !5 6B .
This system has eigenvalues j

k
as shown in Table 1.

We reassign the eigenvalues j
7,8

and their associated eigenvectors by setting

D
1
"A

1#i
1!iB , Y

1
"A

1#1i 1!1i

1#2i 1!2i

1#3i 1!3i

1#4i 1!4iB .

Using Theorem 2.1 and equation (14) we get

B<"A
1!7i 1#7i

4!2i 4#2i

6!2i 6#2i

6)5#5)5i 6)5!5)5iB ,

F<"A
5)1427e!001!2)4550e!002i 5)1427e!001#2)4550e!002i

!1)2016e#000#1)1168e!001i !1)2016e#000!1)1168e!001i

1)2253e#000!1)1171e!001i 1)2253e#000#1)1171e!001i

!5)7169e!001#2)4195e!002i !5)7169e!001!2)4195e!002i B ,
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G< "A
7)7611e!001#6)0498e!001i 7)7611e!001!6)0498e!001i

!2)0047e#000!1)4635e#000i !2)0047e#000#1)4635e#000i

2)0126e#000#1)4914e#000i 2)0126e!000!1)4914e#000i

!8)1763e!001!6)7288e!001i !8)1763e!001#6)7288e!001i B .

However, as mentioned earlier, the products BK FK T and BK GK T are real:

B< F< T"A
0)6848 !0)8398 0)8867 !0)8047

4)0159 !9)1664 9)3555 !4)4768

6)0730 !13)9729 14)2567 !6)7635

6)9555 !16)8497 17)1576 !7)6982 B ,

B< G< T"A
10)0220 !24)4978 24)9052 !11)0555

8)6288 !21)8914 22)0663 !9)2326

11)7333 !29)9102 30)1165 !12)5031

3)4347 !9)9630 9)7576 !3)2276B .

Taking the SVD of H"B< [F< T DG< T] and forming the product in equation (17) gives

B"A
35)3526 13)9956

36)5157 0)4163

50)7391 !1)5127

24)0369 !18)0236B .

Separating the "rst n and the last n rows of the matrix

V"A
F
GB

in equation (17) yields

F"A
0)1127 !0)2357

!0)2578 0)5911

0)2631 !0)6011

!0)1256 0)2597B , G"A
0)2349 0)1227

!0)5967 !0)2431

0)6013 0)2606

!0)2511 !0)1557B .

The eigenvalues of the system controlled by this B, F and G via equation (6) are
displayed in Table 1. It can be seen that the assignment of the required eigenvalues
has occurred and that eigenvalues intended to remain unchanged are unaltered by
the feedback. Although we do not display them, the eigenvectors of the controlled
system are assigned as required.
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4. CONCLUSION

We have developed a method for the partial eigenstructure assignment of the
multi-input state feedback control system modelled by a set of second order
di!erential equations.

We have shown that the input in#uence matrix B, and the gain matrices F and
G can be chosen to assign just a part of the eigenstructure arbitrarily while leaving
the rest unchanged. The column dimension of the matrix B must be at least as large
as the number of eigenpairs to be assigned but B can be constructed to have greater
column dimension if necessary. But fewer columns cannot achieve the required
assignment.

The method developed builds on our previous results in which we determined an
explicit solution for the single-input partial pole assignment problem in vibratory
systems.

Although the solution here is not unique and is generally complex, we show that,
for pairwise self-conjugate data, a real solution is easily available. This is important
for practical problems.

The method has been illustrated with a modest numerical example.
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